Missile Defense Briefing For Science And Engineering Technology Conference Sponsored By National Defense Industrial Association North Charleston, South Carolina

5-7 FEB 02

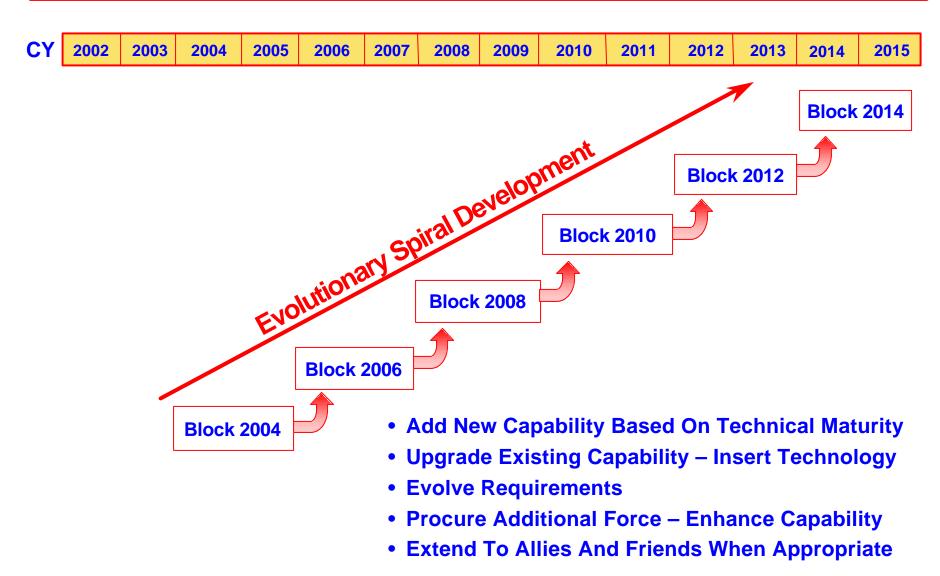
Dr. Charles J. Infosino
Chief Scientist
Missile Defense Agency

BALLISTIC MISSILE DEFENSE MISSION AND TECHNICAL CHANGES 1984-2001

	Research	Phase I	GAPLS	TMD	NMD	BMDS
Time Frame	• 1984-1986	• 1987-1990	• 1991-1992	• 1993-2000	• 1998-2000	• 2001-
Mission	 Protect Against Massive Soviet Attack 	Deterrence	Protect Against Limited Attack	Tactical Requirements	Protect Against Limited Attack	Defense Against All Ranges Of Ballistic Missile Threats
Element Focus	• Directed Energy Weapons (DEW)	 Space Based Interceptors (SBI) EXO-ATM Interceptor (ERIS) 	 Brilliant Pebbles Ground Based Interceptor (GBI) 	Terminal Interceptors (THAAD)	Exoatmospheric Kill Vehicle (EKV)	• Layered (Boost, Midcourse, Terminal)
Key Challenges	• Feasibility	Survivability Of Space Assets	Midcourse Discrimination	• Family Of Systems Integration	Midcourse Discrimination (One Tier Architecture)	T&E BMDS Systems Integration

BMDS CHALLENGES

- Reliable Hit-To-Kill Missiles And Robust **Testing**
- Midcourse Discrimination (Algorithms, **Advanced Sensors, New Concepts)**
- Space Sensors (Global Missile Tracking)
- Boost Phase Engagement (Directed Energy) And Kinetic Energy)
- System Integration And BM/C³


MISSILE DEFENSE PRIORITIES

- To Defend The United States, Deployed Forces, Allies, And Friends From Ballistic Missile Attack
- To Employ A Ballistic Missile Defense System (BMDS) That Layers Defenses To Intercept Missiles In All Phases Of Their Flight (i.e., Boost, Midcourse, And Terminal) Against All Ranges Of Threats
- To Enable The Services To Field Elements Of The Overall BMDS As Soon As Practicable
- To Develop And Test Technologies, Use Prototype And Test Assets To Provide Early Capability, If Necessary, And Improve The Effectiveness Of Deployed Capability By Inserting New Technologies As They Become Available Or When The Threat Warrants An Accelerated Capability

The Missile Defense Agency (MDA) Is Charged With Developing The Missile Defense System And Baselining The Capability And Configuration Of Its Elements. The Military Departments Will Procure And Provide For Missile Defense Operations And Support.

BMD EVOLUTIONARY DEVELOPMENT

"DENY ASYMMETRIC ADVANTAGES TO ADVERSARIES"

Midcourse Defense

• Defends Wide Regions

Space Sensors

 Continuous, Global Coverage

Boost Defense

 Destroys Missile Regardless Of Aim Point – Potential For Global Defense

Layered Defenses

- Multiple Engagement Opportunities Increase Likelihood Of Success
- Complicates Efforts Of Adversaries
- Overcomes Countermeasures

Basing Modes

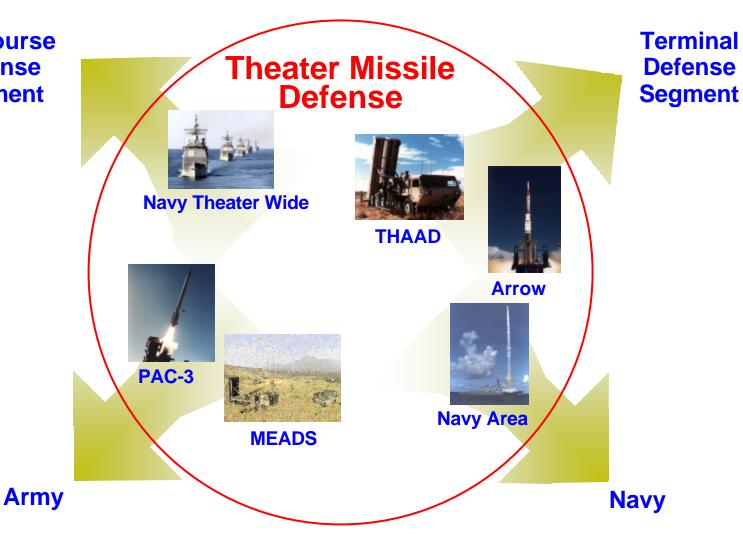
- Ground
- Sea
- Air
- Space

Technical Approach

- Varied
- Changing

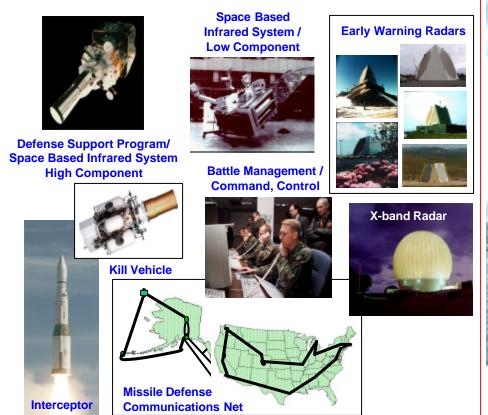
Terminal Defense

 Defends Localized Areas And Critical Assets


Impact

Through Variety In The "Defensive Playbook"

TERMINAL DEFENSE SEGMENT


Midcourse Defense Segment

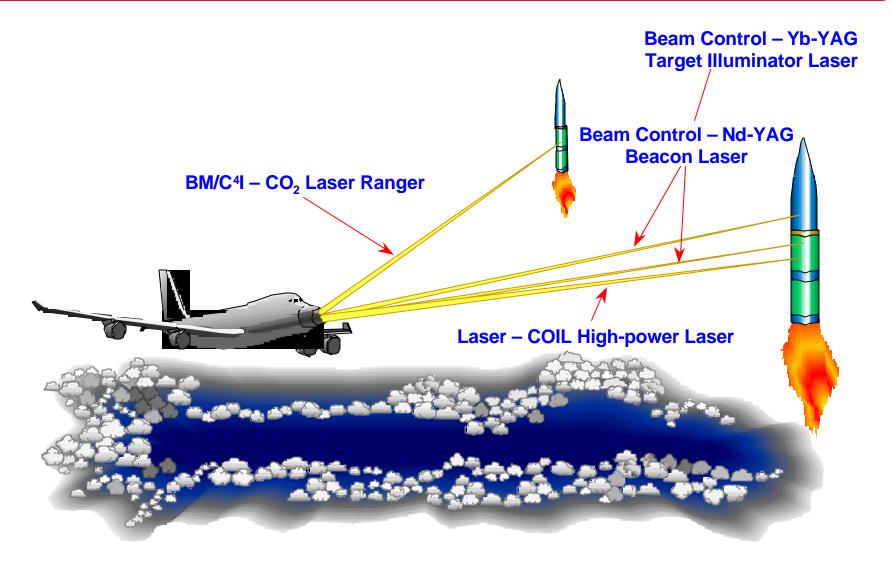


MIDCOURSE SEGMENT ELEMENTS

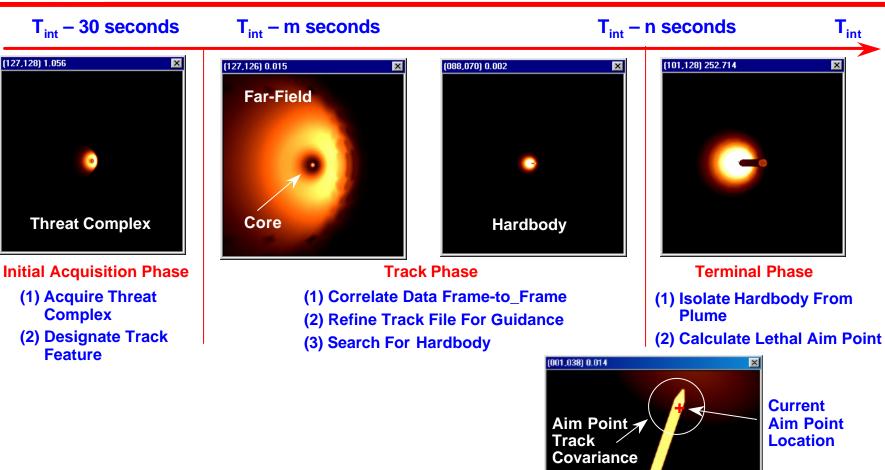
Ground-Based

Sea-Based

BOOST PHASE DEFENSE



ABL HAS FOUR LASERS



KE BPI REFERENCE CONCEPT ELEMENTS AND CRITICAL ISSUES

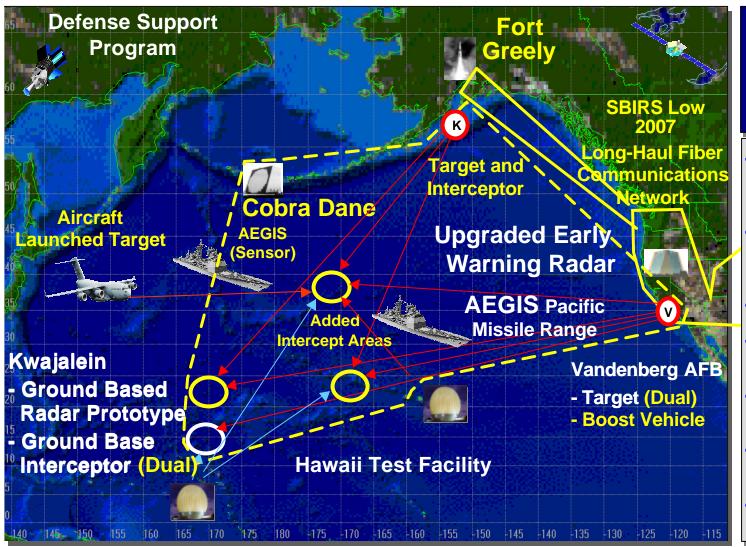
Critical Issues Components – Decide Surveillance/BMC², Booster, Kill Vehicle, Platform **Early Launch Detection And Classification (Dual** Phenomenology) **Ouick Reaction BMC² And Weapon Commit** SBIRS High/Low **BPI Kill** Attack Vehicle **High Missile Acceleration And Burnout Velocity Predicted Intercept Point Generation / IFTU** BPI **Booster Divert And** Missile **Control (Guide to IFTU) BPI** Weapon 3 Flexible KV Axial-Divert Range: >1,000 km, Ground-Based **Propulsion** <225 sec Fly Out Radar (TMD And OTH) Plume-to-Hardbody **Modified Aegis And** Handover Radar Kill **Sea-Based Example – Aim Point Selection And** Issues Also Applicable To Land, Air and Space-Basing Lethality

NOTIONAL BPI ENDGAME FUNCTIONAL TIMELINE

Core Location

Current

Core Track Covariance



SBIRS INCREMENT 3 (Full Constellation)

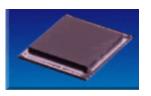
SBIRS Low "Full Constellation" **Ballistic Missile** Detection Tracking Discrimination **Track Sensor** Satellite-to-Satellite **Communications Link** Acquisition Sensor **Constellation Size Is Approximately** 30 Satellites **Direct Communications** To Theater

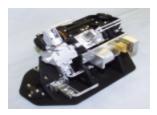
BMDS TEST BED

Key: Current
Enhanced
SBIRS Low
Viewing

- Common Test Bed For Ground- And Sea-Based Elements
- Expandable To Boost And Terminal Segments
- Adds Realism To Test
- Allows Multiple Engagements
- Adds Additional Intercept Areas
- Enhances Ground Test Capability
- Adds SBIRS High And Low Testing

SCIENCE AND TECHNOLOGY MDA APPROACH




FY 02 TECHNOLOGIES

Miniature Kill Vehicle (MKV)

Advanced Focal Plane Array

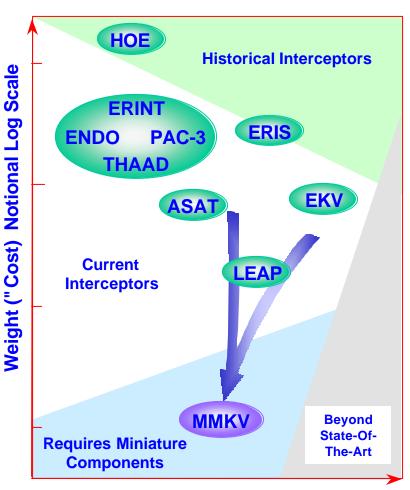
Discriminating Seeker

Space Relay Mirrors

Revolutionary Concepts / Capabilities

- High-speed Atmospheric Interceptor (Terminal)
- Doppler LADAR For Interceptor Seeker To Dramatically Improve Discrimination (Midcourse)
- Interactive Discrimination (Midcourse)
- Low Cost Miniature Kill Vehicles (Midcourse)
- Novel Space Sensors (Boost)
- Airship / UAV-Based Sensors And Weapons (Boost)
- Space Relay Mirrors For RV Tracking (Global)
- Advanced Discriminating Radar (Global)

Science And Technology Investment Strategy


- Focus On High Payoff Technology At Technology Readiness Levels (TRLs) 1 Through 4
- Configure Program To Deliver Specific Products
 That Can Be Transitioned To Major Elements Of The Overall BMD System
- Emphasize The Development Of Enabling Technology For Revolutionary Concepts
- Leverage DoD And Service Investments In Generic Or Multi-mission Science And Technology

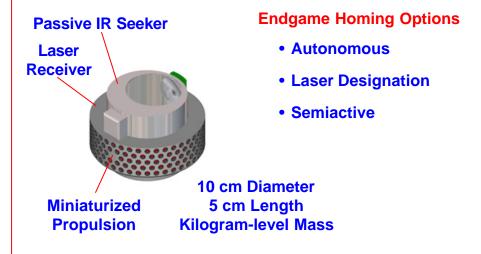
Challenges

- Actual Transition Of Technology Successes Into Major Projects
- Restructure Of Small Business Innovation Research (SBIR) Program To Be More Relevant To The Needs Of Ballistic Missile Defense
- Stabilization Of S&T Funding

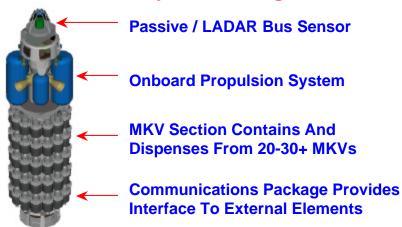
MINIATURE KILL VEHICLE

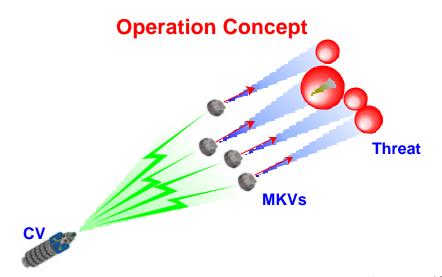
Notional Capability (e.g., R_{aco}, DV)

- Kill Vehicle Paradigm Shift
 - From A Sniper To A Shotgun
- Meet Size And Weight Goals
- Maintain Single Interceptor **Performance**
 - See Far Enough
 - Move Fast And Far Enough
 - Meet Or Beat 'Cost Per Kill'
- Balanced Technology **Development**
 - Evolutionary Versus Revolutionary
 - Risk Versus Reward
- Incorporate Emerging **Technologies**
 - Micro-Electro-Mechanical Systems (MEMS) mi-103449 / 013002



MINIATURE KILL VEHICLE (MKV) CONCEPT


Description


- MKVs Intercept Multiple Objects In A Single Threat Cloud
 - Submunitions, Decoys, And Jammers
- MKVs Are Housed In A Ground Launched Carrier Vehicle (CV). CV Contains Sensors To Interrogate The Threat Cloud And Vector MKVs To Individual Targets

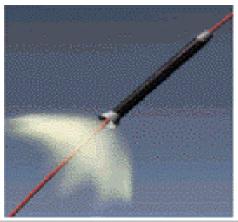
Candidate Miniature KV

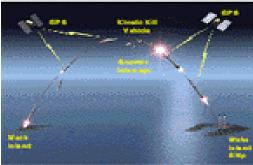
Candidate Payload Configuration

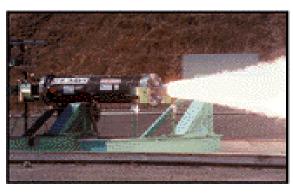
BALLISTIC MISSILE DEFENSE PROGRAM APPROACH

- Single BMD Research And Development Program With Goal Of Entering Into Production Or Procurement As Soon As Directed
- Started With What We Know Build On The Technical Progress
 Made To Date Without Losing Focus
- Prove Capability Through Realistic Testing Expand Test Bed
- Transition Capabilities To Services For Production, Deployment And Support
- Add Capability In Block Increments Over Time
- Aim For An Initial Capability In The 2004-2008 Time Frame
- Move To A Layered Defense Soonest
- Extend To Allies And Friends When Appropriate

The Program Is A Bold Move To Develop An Effective, Integrated Layered Missile Defense Against All Ranges Of Threats

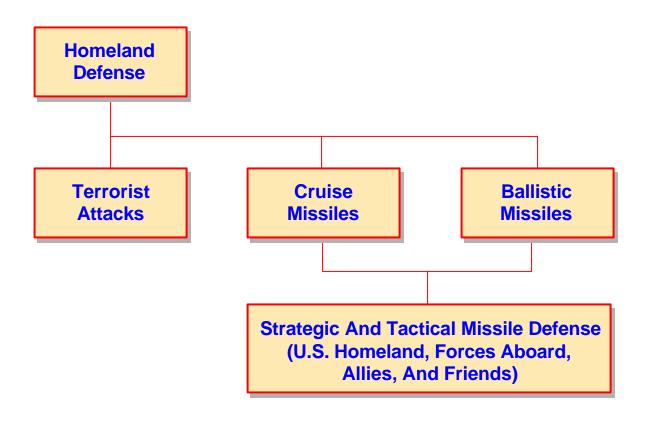



PULLS


TECHNOLOGIES IDENTIFIED FOR RISK REDUCTION

Phenomenology

Booster


Kill Vehicle

MISSILE DEFENSE MISSION IN CONTEXT

Switching From "Threat-Based" To "Capability-Based" Planning

DoD WIDE S&T PROGRAMS THAT SUPPORT MISSILE DEFENSE

Platforms UAVs, UCAV, Airships

Sensors Space Sensors, Including
Space Based Radar

Weapons Directed Energy Weapon
Research

Joint C4ISR Find And ID Fixed And
Mobile Missile Launchers